Injectable Bioadhesive Hydrogels with Innate Antibacterial Properties

نویسندگان

  • Michael C. Giano
  • Zuhaib Ibrahim
  • Scott H. Medina
  • Karim A. Sarhane
  • Joani M. Christensen
  • Yuji Yamada
  • Gerald Brandacher
  • Joel P. Schneider
چکیده

Surgical site infections cause significant postoperative morbidity and increased healthcare costs. Bioadhesives used to fill surgical voids and support wound healing are typically devoid of antibacterial activity. Here we report novel syringe-injectable bioadhesive hydrogels with inherent antibacterial properties prepared from mixing polydextran aldehyde and branched polyethylenimine. These adhesives kill both Gram-negative and Gram-positive bacteria, while sparing human erythrocytes. An optimal composition of 2.5 wt% oxidized dextran and 6.9 wt% polyethylenimine sets within seconds forming a mechanically rigid (~1,700 Pa) gel offering a maximum adhesive stress of ~2.8 kPa. A murine infection model showed that the adhesive is capable of killing Streptococcus pyogenes introduced subcutaneously at the bioadhesive's surface, with minimal inflammatory response. The adhesive was also effective in a cecal ligation and puncture model, preventing sepsis and significantly improving survival. These bioadhesives represent novel, inherently antibacterial materials for wound-filling applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of injectable bioadhesive hydrogels for nucleus pulposus replacement and repair of the damaged intervertebral disc.

Bioadhesive polymers are natural or synthetic materials that can be used for soft tissue repair. The aim of this investigation was to develop an injectable, bioadhesive hydrogel with the potential to serve as a synthetic replacement for the nucleus pulposus of the intervertebral disc or as an annulus closure material. Branched copolymers of poly(N-isopropylacrylamide) (PNIPAAm) and poly(ethylen...

متن کامل

Single and dual crosslinked oxidized methacrylated alginate/PEG hydrogels for bioadhesive applications.

A degradable, cytocompatible bioadhesive can facilitate surgical procedures and minimize patient pain and post-surgical complications. In this study a bioadhesive hydrogel system based on oxidized methacrylated alginate/8-arm poly(ethylene glycol) amine (OMA/PEG) has been developed, and the bioadhesive characteristics of the crosslinked OMA/PEG hydrogels evaluated. Here we demonstrate that the ...

متن کامل

Injectable Hydrogels: A Review of Injectability Mechanisms and Biomedical Applications

Hydrogels have been used for biomedical applications in recent decades. They are a perfect candidate for regenerative medicine as they resemble the extracellular matrix of native tissues. In addition, their highly hydrated structure makes them a suitable choice for drug and other therapeutics delivery. Injectable hydrogels have increasingly gained attention due to their capability for homogeneo...

متن کامل

Fabrication of injectable hydrogels based on poly(l-glutamic acid) and chitosan

Injectable hydrogels as an important biomaterial class have been widely used in regenerative medicine. A series of injectable poly(L-glutamic acid)/chitosan (PLGA/CS) hydrogels were fabricated by selfcrosslinking aldehyde-modified PLGA (PLGA–CHO) and lactic acid-modified chitosan (CS–LA). The oxidation degree of PLGA–CHO and degree of substitution (DS) of CS–LA could be adjusted by the amount o...

متن کامل

MRI Evaluation of Injectable Hyaluronic Acid Hydrogel Therapy to Attenuate Myocardial Infarct Remodeling

Left ventricular (LV) remodeling following myocardial infarction (MI) leads to maladaptive processes that often progress to heart failure. Injectable biomaterials can alter the mechanical signaling post-MI to limit this progression. To design optimal therapies, noninvasive techniques are needed to elucidate the reciprocal interaction between the injected material and the surrounding myocardial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014